Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 468(7325): E6-7; discussion E7-8, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21150944

RESUMO

Global systematics in the location of volcanic arcs above subduction zones are widely considered to be a clue to the melting processes that occur at depth, and the locations of the arcs have often been explained in terms of the release of hydrous fluids near the top of the subducting slab (see, for example, refs 3-6). Grove et al. conclude that arc volcano location is controlled by melting in the mantle at temperatures above the water-saturated upper-mantle solidus and below the upper limit of stability of the mineral chlorite and in particular, that the arc fronts lie directly above the shallowest point of such melt regions in the mantle. Here we show that this conclusion is incorrect because the calculated arc locations of Grove et al. are in error owing to the inadequate spatial resolution of their numerical models, and because the agreement that they find between predicted and observed systematics arises from a spurious correlation between calculated arc location and slab dip. A more informative conclusion to draw from their experiments is that the limits of chlorite stability (figure 1b of ref. 7) cannot explain the global systematics in the depth to the slab beneath the sharply localized arc fronts.

2.
Nature ; 467(7316): 700-3, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20930842

RESUMO

Segregation of magma from the mantle in subduction zones is one of the principal mechanisms for chemical differentiation of the Earth. Fundamental aspects of this system, in particular the processes by which melt forms and travels to the Earth's surface, remain obscure. Systematics in the location of volcanic arcs, the surface expression of this melting, are widely considered to be a clue to processes taking place at depth, but many mutually incompatible interpretations of this clue exist (for example, see refs 1-6). We discriminate between those interpretations by the use of a simple scaling argument derived from a realistic mathematical model of heat transfer in subduction zones. The locations of the arcs cannot be explained by the release of fluids in reactions taking place near the top of the slab. Instead, the sharpness of the volcanic fronts, together with the systematics of their locations, requires that arcs must be located above the place where the boundary defined by the anhydrous solidus makes its closest approach to the trench. We show that heat carried by magma rising from this region is sufficient to modify the thermal structure of the wedge and determine the pathway through which both wet and dry melts reach the surface.

3.
Nature ; 444(7117): E4; discussion E4-5, 2006 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-17099703

RESUMO

The determination of palaeo-elevation has emerged in the past 15 years as an important tool for constraining physical processes that govern the formation of mountain belts. Rowley and Currie report palaeo-elevations for the Lunpola basin within the Tibetan plateau and claim that these elevations are incompatible with 'mantle-thickening models' for mountain formation. We show here that their data do not support this conclusion and, indeed, are consistent with its opposite. The Tibetan plateau could have risen by a kilometre or more as its dense lower lithosphere sank into the underlying mantle.

4.
Science ; 305(5681): 236-9, 2004 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-15247476

RESUMO

Two contrasting views of the active deformation of Asia dominate the debate about how continents deform: (i) The deformation is primarily localized on major faults separating crustal blocks or (ii) deformation is distributed throughout the continental lithosphere. In the first model, western Tibet is being extruded eastward between the major faults bounding the region. Surface displacement measurements across the western Tibetan plateau using satellite radar interferometry (InSAR) indicate that slip rates on the Karakoram and Altyn Tagh faults are lower than would be expected for the extrusion model and suggest a significant amount of internal deformation in Tibet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...